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e Global D retention & recovery.

e Boron and deuterium deposition in tile gaps.
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Recycling and retention studies in
parallel with C-Mod boronization study

THE UNIVERSITY

* Very accurate gas balance in C-Mod

» External pumping closed through discharge
+ 5 minutes

e The recycling effects of BZN are mostly
worn off after 50 shots

» PFC surfaces shift from dominant fueling to
pumping

e After initial BZN effect or after in-vessel
boron cleaning PFC surfaces net retain
fuel.
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Both cleaned and boronized Mo surfaces
can retain large amounts of Deuterium fuel
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. Pre-boromza@on: . B Pre-boronization H-mode
In-vessel cleaning of all Boron coatings. @ Pre-boronization Ohmic

» ~10-20% B near surface (< 1 micron)

@ Post boronization H-mode
15 T T T T T T T T T T |i| T T T T T T T T T T
e D retained ~ 25- 50% of that gas injected

for the discharge, essentially independent of
boron coatings.

[
-)

» D retention process uncertain; not expected
for Mo; surface impurities?

» Time-integrated retention lower due to
natural and planned disruptions, etc.

N

D retained (Torr-1)

e After initial threshold, wall retention has
weak dependence on plasma density.
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Planned disruptions prove effective at recovering
the D from the wall through forced H, / D,

desorption by surface heating
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H/D recovery experiment with planned disruptions
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Recovered ~30% H, in
single operation day.
H/D reduced ~35%

Wall H/D depleted over day!




Further retention studies with cleaned Mo walls.
Repeated discharges show D retention evolution,
but no sign of saturation.

e ungyersiTy %ator
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* Retention measurements after May 05
clouded by titanium dust in vessel. -
1.2E+21 € D atom deficit 50
|
o Subsequent in-vessel cleaning allowed 1E+21 - B % of Fuelled D
. . : = pumped by wall 40
for retention experiments with Mo 0 -
dominated walls. BE+20 | — £
(7)) . . + 30 E
£ > 5
% 6E+20 | a
* Repeat discharges with avoidance of a } % 1 20 g
disruptions in current rampdown, finds 4E+20 - N
steady-state ~30% retention. | 10
2E+20 -
I,=1MA, n,=1.7x10% m?
Implications? 0 ‘ ‘ ‘ 0

e Fuelling: ~5 x N in plasma 0 2 4 6 8

e ITER: 100 g Tritium / pulse

Number of repeated shots
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D retention seems to scale as total ion fluence
to walls:

D retained / D ion to wall ~ 0.3 - 0.5%
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Incident D ions to wall in each shot

e Discharge duration was varied to
change the total ion bombardment.

e Probes and pressures used to
measure total ions to wall
» ~10%3 ions / shot ~ 100x D, fuelling.
> A ~ 0.3 m?2

~T1T- 2 929
> Amain-wall 1 5 m- ..
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D retention seems to scale as total ion fluence

to walls:
D retained / D ion to wall ~ 0.3 - 0.5%
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e Global D retention & recovery.

e Boron and deuterium retention in tile gaps.
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Four poloidal locations examined for
tile gap deposition

i g ]
WISCONSIN C-Mod

e Upper divertor Mosule 13- K02 vodule 13- K02 Voue 19- K0z

Position 8 Position 14 Paosition 20

. . . # 62830297 - # 66B30612
» Very far from separatrix in standard divertor <— Module 19 - K02 i # 70840809
configuration Module 19 - K4
Pasition 5
# 52B10394
Module 19 - KOG
Position 11

e Inner wall # es0203cs

Position 6
# 00BC01494

» Plasma startup on inner wall.
Positon 5.
C01500

Module 59
Paosition &
#007C01473

» Tiles exposed for ~7 years

e Inner divertor Modul 79
» Nose at entrance to inner divertor EEEEF;EE“
» Front-surfaces: some boron deposition caused # 008c 10065
by discharge plasma exposure E%i,‘;i%ﬁ 0
AB—
* Quter divertor ¢
» High recycling and power flux. <€ E

» “Cleaned” plasma-facing side

Case Module position serial #
G JH 73 73A400371

Case Module position  serial
H J-H 74 T4A401491

A H0000 62 CLIRAZBOG2 ' " -
B XXXXXX 20 CLIRAIBOOS ) 1 1H 75 T5A408731
C XXXXXX 36 CLIADIB474 | I JH 76 76A40463]1
D XXXXXX 52 CLIADIB490 K JH 77 TTASDI0A
E 00K 60 CLIAD1B4S8 Maodule 39 - K30 L I-H T8 TRASOI69A
FOXKXMN¥X 6B CLIRAIB1GS Pasition 1 M J-H 79 T9A412011
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Tile gaps in C-Mod
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e Typical tile size ~ 25 x 35 mm.

 Nominal gap distance: 0.5 mm.

Inner wall: tile rotation from : Upper__&fvh or.
JXB during disruptions edee melging

’
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Analyzed tiles chosen with toroidal/poloidal
uniform deposition profiles -->

improved accuracy for gap “inventory” e
nnnnnnnnnnnnn | ]
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e Boron interference e Jon beam analysis at

patterns evident for film | UW-Madison
depths ~ 30 - 500 nm. > RBS (B/Mo)
> NRA (B/D)

~ 0.5 mm spot size
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Deuterium is codeposited in tile-gaps

THE UNIVERSITY

with low-Z boron

e Deuterium surface

Ekator
C-Mod
Upper Divertor Tile 1.5mm from surface X
e Like front surfaces, Boron + Mo ot o N
. . c ° . - . P
appear to inter-diffuse 2 o0% . o
s 70% ~ e
> Surface roughness effect? g 60% — = <& -Moly
S 50% '4‘ - - -Boron
o 0% Al
£ 30% . =
O 20% - =
. < gy €@ u, ~
concentration correlated to 0% ‘ ‘ — = =
0 2000 4000 6000 8000 10000 12000

Boron deposition
i.e. Codeposition.

e Unlike plasma-facing surfaces,
no Deuterium retention in ~pure
Mo deep down gap.
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Boronizations play an important role in
tile-gap deposition on C-Mod
%ator
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e Boronization provides the “initial” low-Z boron, EC resonance swept
some of which is eventually found down tile gaps.

» Approx. 5 microns cumulative B layers on tile
surfaces over 5-7 years.

e Deuterated diborane in Electron Cyclotron (EC)
discharge with static B, ~0.05Tand T, ,;,~ 120 C

» By scanned to sweep EC resonance across R.
» Typical ECD plasma: T ~ 10 eV, n ~ 107 m3
» Source of deuterium for codeposition in gaps.

e Boron: pi ~20 mm >> 6gap 10000 ¢

1000 4N e
E — model:

gap=0.5 mm

e Tile gap deposition during boronizations
must come from neutral boron deposition
caused by dissociation of diborane in ECD.
» Geometric model constructed for expected ——»
boron profile down gap. e

Whyte, PFC, Feb 2006 Distance from front surface (mm) 14
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Boron gap deposition: Main-wall tiles
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Boron gap deposition: Divertor tiles
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e Consistent with
BZN despite high
rate of deposition
on front surface.

* Role of plasma
exposure?

* Poloidal-running
gap identical
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Deuterium/Boron generally increases down gap.

Most deposits very close to surface: A,, ~ mm
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Boron inventory in gaps generally consistent
with deposition during BZN and quasi-uniform
neutral deposition through tile gaps.

G Alcator
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The external source of low-Z boron onto Mo in
C-Mod valuable for understanding
tile gap deposition processes
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e In tile gaps, deuterium codeposition with boron, D/B ~ 2-10%.
» Real D inventory in gaps probably larger due to isotope exchange.

e Neutral boron flux through gaps caused by diborane molecule dissociation
during boronizations plays an important role.

» Levels of deposition roughly consistent with relative area of gaps in PFCs.

» Toroidal gap profile suggest ionic deposition at the outer divertor and inner
wall.

* Asin carbon devices, gaps are a significant location for D retention.
» Implications for retention in ITER with metals walls + BZN?

e Boron deposits concentrated within top ~ mm of surface

» Geometrical access for removal by optical techniques (laser, disruption, etc.)?

Whyte, PFC, Feb 2006 19
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D inventory in gap (one tile)
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Deuterium inventory in gaps is not
obviously related to plasma fluence.
Gaps hold ~half D retention at outer divertor.
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